J. Fluid Mech. (1978), vol. 89, part 2, pp. 209-222 209
Printed in Greal Britain

Stochastic properties of scalar quantities advected by
a non-buoyant plume

By EDWARD E. O’BRIEN

Department of Mechanical Engineering, State University
of New York, Stony Brook

(Received 3 March 1977 and in revised form 14 November 1977)

A model probability density equation is obtained by approximating the convective
and diffusive terms in a single-point density formulation of homogeneous turbulent
scalar transport, with first-order reaction, in a plume. The equation, which includes
the intermittency factor of the scalar field explicitly, is then shown to support similarity
solutions under some constraining assumptions. Comparison of the similarity solutions
with field measurements of conditioned concentrations shows that they can reproduce
the general features of the data for both low intermittency and high intermittency
measurement regimes. On the basis of these asymptotic results a speculative modelling
of the terms representing entrainment at the plume interface is proposed and a class
of similarity solutions for the intermittency factor is obtained by numerical inte-
gration,

1. Introduction

In this paper we consider a continuous source of a species I' being advected by a
turbulent plume. I' may be undergoing a linear reaction at a rate ¢ and the species is
non-existent outside the plume. An important property of such a system, as seen by a
fixed sensor, is that I" appears only intermittently, whenever the measuring point is
embedded in the meandering plume. Intermittency with respect to the scalar quantity
I'(x, ¢) will be defined by
1 if I'(x,¢) >0,

Te.h = {o if T(x,t) = 0.

The use of such a characteristic function to describe a stochastic volume has been
exploited in turbulence since Corrsin (1943) introduced the concept for free turbulent
shear flows. Recent theoretical studies by Libby (1975) and Dopazo (1977) contain
references to the subsequent development of the idea. Experimentalists have developed
the art of measuring probability densities and moments conditioned by the require-
ment that measurements are made only while the point is in the turbulent shear layer.
Such data lend themselves more readily to physical interpretation and to numerical
modelling approximations (Tutu 1976; Libby 1976).

In the case of a statistically stationary non-buoyant plume in a homogeneous
turbulent environment, conditioning can be based on the existence or non-existence
of the species T" such that measurements of I" at a point X are made only when X is in
the plume and subsequent statistics are computed from these conditioned measure-
ments. It appears to us that the use of conditioned statistics is at its least complicated

in the case of the plume in uniform turbulence since the turbulent advecting field itself
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need not then be conditioned. This is in contrast to the turbulent jet studied by
Kuznetsov & Frost (1973). Both the mean velocity field and the turbulence which
advects I" inside the jet have a distinctly different character from the same quantities
outside the jet. Conditioned averages of velocity are therefore perhaps more appro-
priate than the unconditioned values adopted by Kuznetsov & Frost. For the plume
the homogeneous turbulence statistics are assumed to be uninfluenced by the presence
or absence of the scalar field. They are therefore unaltered by the process of con-
ditioning on I".

Some conditioned data have been obtained in field experiments on plumes and a
useful summary is contained in an article by Barry (1975). In one such experiment
Barry (1971) measured concentrations of the radioactive noble gas argon-41, taking
averages every 6 min over several years around an isolated source whose strength was
also continuously measured. Argon-40 has zero background concentration and there-
fore serves as a species to which intermittency arguments can easily be applied. Data
from this experiment, and several others, indicate that the single-point, conditioned,
probability density of the concentration is an exponential function.

More precisely, it was found that

F(I') = F(0)exp{—bT},

where F(I') is the proportion of the measurements for which the concentration is
greater than I' and b is a function of the measuring location.
The contribution of these conditioned measurements to the probability density is

given, by definition, by — oF(T')/oT = bF(0)exp{—bT}.
Measurements taken outside the plume always exhibit the value I' = 0 and hence the
complete probability density f(I') for I' is of the form

fu(T) = ad(T') +bF(0) exp { — T},

where a represents the proportion of the measurements for which I' = 0. We assume
that the number of locations inside the plume for which I' is zero form a set of measure
zero and that a can be interpreted as the fraction of the measurements for which the
measuring point is outside the plume.

The coefficients a, b and #(0) depend on the spatial location of the measurement
and can be related to more common statistical quantities as follows:

T- 'f rf(r)dr = 7o)

and, since .[ ® fo(D)dl = 1,
0

a+F(0)=1.

In this case one can interpret F(0) as the proportlon of the measurements for which
I'>0.

Traditional turbulence usage has assigned y = 1(x,1), the 1nterm1ttency factor, to
denote this quantity. Thus b = y/T,a = 1 -y and

2 T
£o(D) = (1—y)8(0)+ 'I";exp{ Zﬁ}.
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In the theoretical development to follow it will be convenient to use the conditioned
average (I') rather than the unconditioned mean I'. From the definition of y

r= 7(1“)‘

and fo(D) = (1 —9)8(I) + 4= (1)

5

exXp{ ——=<i.
T d @

Equation (1) is one form of an often used, more general relationship between the

conditioned and unconditioned probability density function for an intermittent scalar

field, namely fr(D) = (1=9) 8(T) + yfre(D), (2)

where f.. refers to the probability density of the conditioned variable and may be
expected to be a continuous function of I'. Form (2) applies in general for intermittent
scalar fields as can be seen from the following analysis.

The probability density for I" can be obtained by considering the random variables

D(x,t) = I(x,t) T*(x,t),

where I'*(x,?) is an artificial random variable whose statistics are those of T'(x,)
when X is in the plume and are unchanged when x is outside the plume. The statistics
of I'* are therefore those of the conditioned concentration while the statistics of T
refer to the unconditioned measurements.

From the theorem on the probability density of the product of two random variables

we have to |

r .
Fo(T) = f g fer ( ’E) dw (Papoulis 1965, p. 78).
Since the form of the joint probability density f; r+(I, I'*) must be
Jroo(L,T*) = AL, T*)8(I) + B(I,T'*) é(1 - I),
integration over I yields  fr.(I'*) = A(T'*,0) + B(I'*, 1)
and further integration over I'* gives
1=[A(T*,0)dT*+ [ B(T*, 1)dT'*.
The intermittency function y can be defined by

B(I'*, 1) = yfr.(I'*), since fw B(I*,1)dT*=1=1,
0

and hence 4(I'*,0) = (1 —7)fr.(I'*). Thus

+oo oo
fr(l“)=f lA( F)b‘(£)dw+f iB(w,£)3(1_£)dw.
—w ‘w) \w —wo |w| w W
On changing variables from w to y = I'/w and carrying out the integrations, we find

fr(l) = lirr; {y~1A(T/y,0)} + B(T', 1),
y—>

or oD) = (1 =y)lim {7 fra(T'/9)} + ¥fro(T)
y—0
8-2
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If T' + 0 the first term is zero provided that f..(I'*) approaches zero more rapidly
than 1/T'* as I'* - co. To evaluate the case when I' = 0 we note first that for arbitrary

fixed ¥ +
® r r toq r
(= d(——) =f 1 .(—)dI‘= 1.
T (y) y L7y

+ T
Hence f lim - f I (—) al' = 1.

-~ y—>0Y

. r
Therefore lm {-— Jre (—), = o(I")

y—o Y Y

and (2) holds.

2. Probability density equation for a plume

We consider an advected field I'(x, ¢) satisfying a linear conservation equation
oT'/ot+V .ul' = DV2T —cT,

where u is an incompressible turbulent velocity field, D is the molecular diffusivity of I’
and cI" is the rate of decay of I" which occurs, for éxample, if I' undergoes a pseudo-
first-order reaction in the plume.

For such a system the single-point fine-grained density p( ) (Brissaud & Frisch
1974) has been shown to obey an equation of the form (O’Brien, Meyers & Benkovitz
1976) F)

at +V. up(F)—c—x[Fp(F)] D—I:hm szf"p(f”, fyatv, (3)

X=X

where p(I‘) = §[I(x,t) - F], u is the turbulent velocity and p(f", f‘) is the joint fine-
grained density of the concentration at two points:

p(f, ) = o[n(x’, 1y — P18 (x, 8) - T.

The role of intermittency can be studied by the conditioning technique introduced
by Dopazo (1977) and applied recently to two free turbulent shear flows {Dopazo &
O’Brien 1977). One multiplies (3) by the intermitternicy function I(x, t) using the rules
of calculus for discontinuous functions. We can summarize the procedure as follows.

If S(x,t) = 0 is the equation of the interface, then it can be shown (Gel'fand &

Shilov 1964, p. 209) that grad I = 8(8) grad 8 (4)

in the sense that for any ‘good’ function ¢
(grad I, ¢) = (8(S) grad 8, ¢).
Consequently one may write
QVI = QMé(8),  ol/ot = —us. VI, (5)

where S has been so chosen that |grad S ] = 1, ) is the normal to the interface in the
direction of the plume material, @+ is the value of any field quantity @ at the interface
on the side in the positive direction of y and u®.y is the normal speed of the interface
(Aris 1962, p. 79).
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An equation describing the statistical state inside the plume is obtained by multi-
plying (3) by I(x,t), using (4) and (5) to bring I inside the derivative operators and
then taking the ensemble average. One finds

3 A A 0 X A A A
Ip( )+ V.ulp(l) = o= [PIp()] - Daf, lim V2, fo 1,0 'p(t7, T)dl + B,
=X
(6)

where

0 T_A—'_A__A 0 ~ A
E, = pH(u—u®) . 04(S)+ 2Dhm Ve P T'p(T', 1) dI. VI+D% [Tp(') VAI].
In (6), p* is the probability density at the interface on the plume side and (u—u®).n
is the normal component of the velocity of the interface relative to the fluid velocity,
in other words the speed of entrainment of fluid into the plume (Phillips 1972).

An equation which describes the conditioned field outside the plume can be obtained

in a similar manner, except that one begins by multiplying (3) by 1—I(x, ¢). Then one
finds

-Ipl) —u . b "
‘(#(—)W-“(l—lm oS (N(=T)p(D)]
7 ~ _
_Daf*,h_,mlvzf [1-I(x' t)]FP( T )dF'—Ep, (7)

Since 1—1I(x,t) is non-zero only when X is outside the plume, where I'(x) = 0, it is
evident that the first two terms on the right-hand side of (7) are identically zero. These
correspond respectively to reaction and molecular mixing in the ambient fluid. It is
physically necessary, and obvious, that they must fail to contribute to the evolution
of the scalar probability density function in the ambient fluid, which is devoid of the
scalar. Indeed, in the absence of long-range effects such as radiative transfer, the only
possible contribution to such a scalar density function can be at the interface, where
molecular diffusion and turbulent straining combine to cause detrainment of the
ambient fluid as it becomes incorporated into the plume through the plume boundaries.
—E,, can then be recognized as the detrainment term, which, both physically and
mathematically, is necessarily equal and opposite to the entrainment term K, in (6).

In moment formulations of intermittent turbulent shear flows modelling approxi-
mations have been proposed (Libby 1975, 1976; Tutu 1976) for entrainment terms
similar to these. In this section we shall not need to inquire further into the nature of
such terms. By adding (6) and (7), we can remove E,, and avoid a direct confrontation
with the physics of entrainment.

When (7), with the diffusion term set to zero, is added to (6) one obtains

3fr(F)

A a A
+10. Vfr )+ V.ou'p((l') = [I’fr] DhmVx aFfF’y(x’)fr.(F',F)dI", (8)

where f r(ﬁ) = p(f‘) is the unconditioned probability density function for the scalar
field, @i is the divergence-free mean velocity and u’ the fluctuating velocity defined by
u = i+ u’. We have also adopted the consistent definition

1x) (£, T) = yx') fra(f, 1)
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where fr.(f", f‘) is the joint density of f‘(x’, t) and f‘(x, t) conditioned by the require-
ment that X’ be in the plume.

Equation (8) is not in a satisfactory form. Both the turbulent transport and the
diffusion term require information not contained in f.. An approximation for the

turbulent transport term V. u'p(f‘) can be obtained if one also decomposes the fine-
grained density p(I') into a mean and fluctuating part:

A

() = p)+p(D) = fu( @) +2' (D).

Then the term u'p(f) u'p ( ) suggests a mean gradient diffusion analogy of the
type

wp' (1) = —x. Vi), (9)

where x is an eddy-diffusivity tensor for the transport of probability density. We note,

for example, that o A ——

f u'I'p'(I'dl' =u'T,
0

and an approximation of the form (9) givés
f‘” wp(f)dl = —xfm Pvfyfyaf = —x. VL.
0 0

Hence (9) is, inter alia, equivalent to an eddy-diffusivity assumption for the turbulent
flux of the species I', and it seems likely to be an adequate approximation for turbulent
transport in those situations in which a mean gradient transport approximation for
the turbulent flux has proved useful. An approximation of the form (9) was first used
by Kuznetsov & Frost (1973) in their study of a turbulent jet. Most recently Meyers,
O’Brien & Scott (1978) have proved that an eddy-diffusivity form for the turbulent
transport of probability density is an exact result for the transport of reacting scalars
in the absence of molecular diffusion when either (@) the turbulence is homogeneous
and interest is restricted to time scales much larger than the Lagrangian time scale
of the turbulence or (b) the velocity-field time correlation is very short compared
with the concentration-field circulation time. Limit (@), which is an extension of
Taylor’s (1921) Lagrangian analysis of turbulent diffusion, is of interest here. Values
of k obtained from his Lagrangian velocity correlation analysis have long been used
to represent plume development with some success (Csanady 1973, p. 236) and it
seems to us that (9) is likely to be a reasonable approximation in the context of the
idealized plume under investigation here. We shall adopt it for the remainder of this
study.

To consider the molecular diffusion term in (8) we note that fI‘ 'f I~.(I“’ )dF’ can
be written as E’{f"lf‘} fr.(f' ), where E’{I‘ )F} is the conditional expected value of
I'(x’,t) given I'(x,¢). For non-intermittent flows the molecular dlﬁ'usmn term was
first approximated by Dopazo (1973) using the assumption that E {F ]I‘} was Gaussian.
Similar results can be obtalned by applylng mean-square estimation theory to evaluate
E{f|ysince [[ {1 — g(T))2f, (£, ) af* 4T is minimized by the choice g(f') = E{f* (f‘}
(Papoulis 1965, p. 163). When g([‘) is restricted to the class of linear functions of T
one reproduces exactly the Dopazo approximation, for which some confirming
experimental data now exist for homogeneous turbulence {Tavoularis 1976, private
communication) and for jets (Adrian ef al. 1976). Kuznetsov & Frost obtained a similar
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approximation for the molecular diffusion term in a probability density equation by
postulating Langevin processes, with non-random rates, to describe small-scale
mixing of both I and @. An advantage of the first two approximations is that they
relate the molecular mixing coefficient to the turbulence structure.

In our case linear mean- square estimatlon theory applied to the scalar field inside
the plume approximates E{l" |1"} by (1" >+a(1" <1"> ), where (F) is the conditioned
mean value of T' and « is a coefficient deﬁned by @ = p(x',x) o /o, where p(x’, x)
is the correlation coefficient of the processes ' and f and o and o are, respectively,
the variances of ' and .

Since one is ultimately interested in the limit X’ —x it is appropriate to assume
isotropy of the small scales and thus to obtain for a the result

a = p(x,r), where r=|x"—x|.

The last term in (8) can be written in expanded form as
—D%f( )lim (29, 7.V B{E| B+ y(x) V2 B0 By + B D By v,
—X

where Ec{f‘ |f‘} is the conditional expected value of £'(x’) given f'(x) and conditioned
further by the requirement that x’ be in the plume. Denoting the scale of the plume
width by L, the scale of f by T, its centre-line mean value, and the scale of y also by
its centre-line value, which is of order unity, we can readily estimate the magnitudes
of each of the bracketed terms (after taking the limit x’ — x) as

To/L% To/A%, T,/L*
respectively, where A, is the scalar microscale defined by
Ai(x) = —2(B%p/or*) 1,

and is taken, for our scaling purposes, to have its centre-line value. Similarity argu-
ments require that (A,/L)? be proportional to the ratio of molecular to eddy diffusivity
in a plume (Csanady 1973, p. 236) and the comparison between similarity predictions
and mean data supports a proportionality constant whose value is of order unity.
Since || is at least several orders of magnitude larger than D in the atmosphere we can
assume that the second term in the above expression will be the dominant one in
describing diffusive processes. The last term in (8) is then adequately represented,
using mean-square estimation theory, by

D A A
—xg(—;)yg% L) (B~ (DY)

This dominance by the microscale process clearly becomes stronger with increasing
Reynolds number and should be quite adequate for atmospheric plumes except under
very stable conditions. With these approximations for turbulent transport and
diffusive mixing, the closed-form equation for the probability density function f(T")
becomes

6fra(t U.Vfr=V. KVfr+c T (Tfr) +7ﬂar[ (T —<{TY) frel, (10)



216 E. E. O Brien

where the circumflex over I'" has been dropped, # = 6D/A% and « is the eddy diffusivity,
which is taken as a scalar for simplicity although in atmospheric plumes one should
at least distinguish between vertical and horizontal diffusion.

In the next section we apply decomposition (2)-(10) to obtain a pair of equations for
the two unknowns y and fr.(I'). We then seek conditions under which similarity
solutions of the equation for fr.(F ) are possible. In the limit of very low intermittency,
y->0, the one-parameter family of solutions is shown to include as its most likely
member the density fr.(I") = (I")~texp{—I'/{I')}, which describes the measurements
of Barry discussed in the introduction.

3. Similarity solutions for the conditional density
We follow Kuznetsov & Frost by introducing the Heaviside function H(I') into
the conditioned density: Fou(T) = H(T) P(T),

. {0 i T<o
)= 1 if T>0

where

and P(I') can be assumed to be smooth and continuous at the origin.
Since dH(I")/dT" = &(T"), the density function f.(I') becomes, from (2),

fr(l) = (1-7) &) +vH(T) P(T),
where the dependence of f., y and P on x and ¢ is understood but not displayed.
Inserting fi(I") into (10) and equating terms containing §(I"), we have

?t'r;j;' ai (K a7’)+y,6'<1“>1> 04, (11)

where P(0+) means lim P(T"). Similarly the terms containing only the smooth function
r—-ot
P(I') satisfy

oP _ 0P a( aP) 2K 0P oy

oP
75 K a) S ﬂap (D' —(T'S) P]— &(TYP(0) P+ cP + T &

or’
(12)

With the exception of a designation for £ and the addition of the reaction terms,
equations (11) and (12) are identical with those proposed by Kuznetsov & Frost for
the probability density concentration in a turbulent jet and their method of solution
seems to be applicable. We summarize it briefly here.

An equation for the mean conditioned concentration is obtained by integrating
(12) over T to yield

aTy Ty & T 2K &T) oy
o T4 os iK o, y o, o,

— () = B(TH2P(0%). (13)

In (11)-(13) the term containing P(0+; x, t) represents the rate of entrainment of
ambient fluid into the plume by small-scale mixing at the plume boundaries. It is
physically plausible that the rate of entrainment at a point is proportional to the
frequency with which fluid of very low scalar concentration is found in the plume
at that point. For a point always embedded in the plume P(0+) should be zero. For
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flows with rapid entrainment one expects P(0*) to be relatively large when X is a
point for which the intermittency factor y(x) is low. One effect of such entrainment is
to decrease the mean concentration in the plume, in agreement with (13).

If (12) is inserted into (7) and the result compared with (11) it follows that terms
representing the rate of entrainment of probability density are given by

B, = yp(THP(T) &(T). (14)

A more general expression for the entrainment rate can be obtained if one makes use
of (8) without any assumption to close the molecular mixing term. This takes the form

» = Dlim V2 7(x') B{I"|T} P(I) (). (15)

The equivalent source term for the intermittency factor vy, obtained by integrating
(15) over all values of T, is

Dlim V2 y(x') E{"|0} P(0),
xX—>x

which is a generalization of the last term on the right-hand side of (11).

High-quality conditioned measurements are yet to be made in plumes, and until
they are it will be necessary to use either extensive numerical computations or un-
verified statistical assumptions to analyse (11) and (12). In this section we consider
two simple but plausible postulates concerning the nature of the density function in
the limits y— 0 and > 1 and then examine their consequences. For points in the low
intermittency region, i.e. y >0, we follow a proposal made by Kuznetsov & Frost for
a jet: that the conditioned mean is likely to be only a weak function of position in such
regions and that the conditioned density fr.(I"), and therefore P(I"), may not depend
explicitly on the spatial co-ordinates but may exhibit a universal shape when scaled
with the mean conditioned concentration. That is, we seek a density of the form

P(T') = (T')"'g(9), (16)
where ¢ = (I')-1T".

The field experiments described in §1 were compatible with this form with the
choice, from (1), g(¢) = e~%. These results apparently hold for measurements made at
a number of sites with a variety of averaging times (Barry 1975). Nevertheless, in the
absence of controlled laboratory measurements it is impossible to judge how satis-
factory (16) might be. Its use certainly implies a rapid mixing process in the region
just inside the plume boundary for otherwise no strong similarity postulate such as
(16) could possibly hold. High-quality conditioned data on the density function in an
entraining shear flow have been reported by LaRue & Libby (1974). These data and
as yet unpublished density measurements at low y in a half-heated grid flow (LaRue
& Libby 1977, private communication) seem to show at least a qualitative agreement
with (16). There is no reason to believe that the entrainment processes are of the same
nature in both these flows since the large-scale structure is probably quite different.
They are likely to exhibit comparably shaped density functions only if, in both flows,
the small-scale mixing process is rapid enough near the interface to dominate the
distribution of the scalar field in that region.
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On substituting (16) into (12), using (11) and (13), and multiplying by (T'), one
obtains

(190)~ 19+ 135 +(20(0)~ )9 = BT+ 9 25+ 2], ()
here B is th tit, B =52 1og¢my’ 18
where B is the quantity = ,4_9{6_701 og( }} (18)

and the linear reaction term has entirely disappeared. A nonlinear reaction con-
tributes terms which can never satisfy this kind of similarity.

Similarity solutions of (17) are possibly only when B is a constant independent of
position. When B = 0 the solutions for g(¢) include the results (A2) (see appendix)
of Barry. The case of negligibly small B may be the only one for which the
similarity assumption can apply since «, # and (I') are all functions of the spatial
co-ordinates. Therefore it is of interest to estimate the size of B from the scaling
relationships introduced in § 2. From (18) and the previous assumption

(K/D)(A,/L)2 = 0(1),

we find B = 0(10-1), a value which may be small enough to permit it to be ignored.

In the appendix we also provide some details of the solutions of (17) for B % 0
and for g(0) # 1. In particular an expansion of g in powers of B about the solution
g = exp{— ¢} is displayed in (A 3). For small enough B this representation of g can be
shown to preserve the following properties:

f:gd¢ -1, g(¢)>0, limgg)>0

and g(@) continuous in ¢ for ¢ > 0

The limit v — 1, which is pertinent for locations almost always inside the plume,
is often assumed to be one in which a normal distribution can be expected, since the
scalar field should then be well mixed. This assumption can be examined in the light of
(12) by investigating the following similarity form as a possible solution:

fr(T) = P(T) = o7h(y), (19)

where = (I'-T)/o and o2 = (F T).

One finds quite readily that reactive species, even at first order, cannot satisfy such
similarity except when their kinetic rate is significantly slower than the turbulent
mixing rate. Furthermore, even for non-reacting passive species, similarity will be
obtained only if the following detailed balance between advection mixing and dis-
sipation is achieved at every spatial position: u.Vo?+ fo? = x(VT)2. This situation
has been examined by Csanady (1973, p. 236) and may in fact apply approximately
in a limited regime of plume development. If it does, then for the non-reactive plume
one finds the solution of (19) to be the normal distribution

) = 2myHexp{—4yH or fuI)=(2m)texp{—(I'-T)}/o?.

These two limiting solutions for y—~ 0 and y — 1 suggests a simple analytical model
for the rate of entrainment of I' probability density. We first note that the solution
g(¢) = exp{— ¢} exhibits the behaviour (I')P(0;x) = 1 and the source term for
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intermittency (11) is then fy(x) while the rate of entrainment of I' probability density
into the plume becomes, from (14),

E, = py(x)4(T)

These results apply only to the region of the plume in which y < 1.

When y -1, P(0;x) 0. If one assumes a grossly simplified statistical geometry of
the interface such that the density function can be scaled with just the intermittency
factor ¥ and the conditioned mean (I'), dimensional analysis and the limiting
solutions above suggest the form

<P>P(0,X) = G(‘)’)’ (20)

where G(0) = 1, G(1) = 0 and G(y), which is non-negative but otherwise arbitrary, is
to be determined experimentally or modelled.
Under assumption (20), (11) becomes a closed equation for the intermittency factor:

dy/ot+0.Vy = KV + ByG(y). (21)

For a statistically stationary axisymmetric plume in a uniform fluid of constant
mean velocity %, = UJd;; and under the usual ‘slender’ plume approximation, which
ignores axial diffusion, the equation for the intermittency factor becomes

oy Ko
Ve = rar( ar)+'37’G

When the reaction rate is zero or negligible compared with the turbulent mixing rate,
similarity solutions for y can be investigated by defining £ = r/o(x), where o(z) is the
standard deviation of relative dispersion, a quantity commonly used in meteorology
and one that is related to K (Csanady 1973, p. 236) by K = 3Udo?/dx. We find

d¥y (Uodo dy  poty

7 (T a) () #+ 5 o -
Since the coefficient (Uco/K) (do /dzx) is unity, similarity will be possible only if fo?/K
is independent of x. This parameter is the same as that which Csanady (1973, p. 236)
obtained as a condition for self-similarity of the scalar fluctuation intensity in a plume,
and his evaluation of the degree with which experimental data supports self-similarity

can be carried over directly to our argument here. In such a case if we let fo?/K be a,
a constant, the equation to be solved is

Y +HE+ENY +ayG(y) =0, (22)

where y'(0) = 0 and y(x0) = 0.

One form of G which satisfies both boundary conditions on (22) and introduces no
arbitrary parameters is G = 1 —+v. Both Libby (1975) and Tutu (1976) have proposed
modelling momentum entrainment in a shear flow by a term proportional to y(1—1v).

Csanady proposed for « a value near 3-0. In figure 1 we display numerical solutions
of (22) for @ = 1~y and & = 3. All solutions for which y’(0) = 0 and 0 < ¥(0) < 1
automatically satisfy the boundary condition y(a0)->0. When y(0) < 0-625 such
solutions have negative regimes and must be discarded. They have already violated
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Fi1cure 1. Reduced intermittency factor y/y(0) vs. reduced radial position r/r*, where 7* is the
radial position at which y/y(0) = }. , Y(0) = 0-7, 7% = 1-65; —~—, y(0) = 0-9, r* = 2-68.

the assumption that the centre-line intermittency is near unity. The cases y(0) = 0-7
and 0-9 are displayed in figure 1 and show at least qualitatively similar behaviour to
measured distributions of y in wakes and jets.

4, Conclusion

Equation (10), which is proposed to be adequate to describe the evolution of the
single-point probability density function in a plume, is a result of two approximations.
Turbulent transport of the density is represented by an eddy diffusivity in a way that
conforms to the traditional use of these coefficients in meteorology. Small-scale
mixing of the scalar field in the plume due to the interaction of turbulence and molecular
diffusion has been represented by linear mean-square estimation theory with a time
scale determined from the turbulence microscale and the scalar diffusivity. There is no
way to verify the accuracy of these approximations in the absence of laboratory
measurements but they seem to provide the correct qualitative features of entrain-
ment and subsequent mixing and reaction.

The similarity postulates which led in § 3 to solutions for the conditioned density
and the intermittency factor, under various added constraints, must be considered
speculative as they are not at present supported by density or intermittency measure-
ments in plumes. 1t is feasible to bypass such postulates by seeking numerical solutions
of (10), combined with assumptions about either the statistical geometry of the
interface or the entrainment rate or the intermittency factor, but that seems to be a
substantial undertaking, the worth of which is also compromised by the present lack
of experimental data. It has been found possible to understand a great deal about
fast, diffusion-limited reactions with low heat release in the light of knowledge of the
one-point density function for a passive scalar in the same flow (Lin & O’Brien 1974;
Bilger 1976). The application of the present theory to the case of photochemical smog
production from nitric-oxide-rich emissions into ozone-containing ambient air and the
qualitative comparison of its predictions with measured data may be an appropriate
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test of the modelling introduced here since, under some conditions, the evolution of
reactive and product species will be mostly determined by the entrainment process
and by small-scale mixing inside the plume. A study of this application is in progress.

Professor R. Chevray and Dr C. Dopazo stimulated the author’s interest in this area
through many valuable discussions. The work was supported in part by the National
Science Foundation through grant no. K0O40738 and in part by the U.S. Energy
Research and Development Administration under constract no. E(30-1)-16 to the
Atmospheric Science Division of Brookhaven National Laboratory.

Appendix. Similarity solutions

Kuznetsov & Frost have examined (17) in the limit in which B is zero. Their solution
can be written as

_ [9(0) {1 - [1—g(0)] g} T-OVE—0ON if g <1 —9(0)]“’} (A1
T {0 if g >[1-g(0)]". )
In the special case g(0) = 1, (A 1) reduces to
g = exp{—¢},
1 r
or Jo(T) = ) exp : ——-<—I.T>}
and £lD) = (=30 + Fsexp| o) (4 2)
8 ) P

in agreement with (1) and the measurements reported by Barry. g = exp{— ¢} is the
only member of (A 1) which has finite and non-zero probability densities for all ¢ and
whose moments of all orders are finite,

When B + 0 the case g(0) = 1 becomes

d ., dg _
BJ¢—2{¢ 9}—@'— =0

A series solution in powers of B can be constructed and is of the form

g= exp{—¢}(1 +Bf:f(¢l)d¢1+...+3nf:...f:f(¢)d¢...d¢1+),

where f(¢) = ¢%— 4¢ + 2. Using a result from iterated integrals (Goursat 1964) gives

© Bn
s-ew-9)(1+ £ 55y

f ? (¢ — £)n-1(£3 — 4t + 2) dt) . (A 3)
0

The series converges rapidly for all finite B and one can easily show that f gde = 1.
However, for B large enough, it fails to guarantee g > 0 near ¢ = 2. We have not
computed an upper bound on B for which g as given by (A 3) has all the desired pro-
perties of a probability density.
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More generally, by using the following form equivalent to (17),
B(¢%') +[2B—(9(0)—1)] (¢9)' — ¢ —9(0)g = O,
we can easily show that f: gd¢ =1

if g(0) and ¢’(0) are bounded and lim g = O(1/¢).
¢ —o

Equation (17) has two parameters g(0) and B. The special case g(0) > 4, B = g(0)—}
can also be readily integrated by rewriting (A 1) in the form

g'=y, By +[(24+9(0)¢—1]y = 0.
Hence ¢' = y = ¢~bexp{c,— 1/Bgp}, where b =2+¢(0)/B and ¢, is a constant of
integration.
Finally, by one more integration, letting B¢ = 1/z, we find

g = g(0) + (exp ¢;) Bb-1 on -2eg—2 (2,
B¢

In this case g is everywhere positive but the integral, which is related to the in-
complete gamma function y(b—1, 1/B¢) (Abramowitz & Stegun 1965, p. 260),
increases monotonically with ¢ and g can be normalized only by truncation at some
finite ¢ < g(0)1.
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